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WHY Al AT THE EDGE?

Data Privacy The Big Read Google LLC + Add to vaT

Can we ever trust Google with our

* Increased privacy if data never leaves the edge health data?

66 Sending data to a central location consumes energy. Once there, the
. . R .I The technology company will need to persuade patients to hand over some of their most
temptation is great to keep crunching them personal nformation

Hannah Kuchler in San Francisco JANUARY 20 2020 b7 &
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Network Latency/Bandwidth/Connectivity

* Cloud Al requires good networking

66 Self-driving cars need very fast-reacting connections and cannot
risk being disconnected; computing needs to happen in the car itself !

66 Traffic lights in Las Vegas generate 60 terabytes a day (10% of the p—

amount Facebook collects in a day)1 99 — Should data be :’:g“:,hed atthe

“Edge computing” is on the rise

« (the edge must fulfil requirements instead though!)

O NCE A YEAR the computing cloud touches down in Las Vegas. In early
December tens of thousands of mostly male geeks descend on America’s
azon

! https://www.economist.com/special-report/2020/02/20/should-data-be-crunched-at-the-centre-or-at-the-edge

the c ore than 2,500 different sessions over a week at g

o o @ @ ic] alled “Re:Invent”. The high point was the keynote featuring Aws's
latest offerings by Andy Jassy, the firm’s indefatigable boss, who paced the stage
for nearly three hours.



WHY Al AT THE EDGE?

Power Consumption of Al

2 https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/

Cloud Al consumes considerable natural resource.

66 The carbon footprint of training a single Al is up to 284 tonnes of
CO, equivalent — 5x the lifetime emissions of an average car ?

66 An estimate puts the energy used to train the model at over 3x the

yearly consumption of the average American 3

66 From the earliest days, the amount of computing power required
by the technology doubled every two years. But from 2012
onwards, the computing power required for today’s most-vaunted
machine-learning systems has been doubling every 3.4 months3 99

An indirect benefit of moving computation to the
edge, is that it has to be more efficient

3 https://www.thequardian.com/commentisfree/2019/nov/16/can-planet-afford-exorbitant-power-demands-of-machine-learning
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Creating an Al can be five times
worse for the planet than a car
000000

TECHNOLOGY 6 June 2019
By Donna Lu

Training artificial intelligence is an energy intensive process. New estimates suggest that the carbon
footprint of training a single Al is as much as 284 tonnes of carbon dioxide equivalent - five times the
lifetime emissions of an average car.

Emma Strubell at the University of Massachusetts Amherst in the US and colleagues have assessed the
energy consumption required to train four large neural networks, a type of Al used for processing

language.

Language-processing Als underpin the algorithms that power Google Translate as well as OpenAI’s
GPT-2 text generator, which can convincingly pen fake news articles when given a few lines of text.

Read more: Al's dirty secret: Energy-guzzling machines may fuel global warming

These Als are trained via deep learning, which involves processing vasts amounts of data. “In order to
learn something as complex as language, the models have to be large,” says Strubell.

A common approach involves giving an Al billions of written articles so that it learns to understands
the meaning of words and how sentences are constructed.



PERFORMANCE METRICS

Inference at the Edge (/End)

« Connectivity, latency; privacy...

« ...but constrained platforms
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Platform-dependent metrics

Platform-independent metrics

Flatform Computing cores Execution time (ms) | Power (mW) | Energy (mJ) Top-1 Accuracy (%)

GPU (614MHz) + A57 CPU (921MHz) 7.4 1340 9.92
Jetson Nano GPU (921MHz) + A57 CPU (1.43GHz) 4.93 2500 12.3
) A57 CPU (921MHz) 69.4 878 60.9
AS57 CPU (1.43GHz) 46.9 1490 69.9

A15 CPU (200MHz) 1020 326 320 712

A15 CPU (1GHz) 204 846 173 '

) A15 CPU (1.8GHz) 117 2120 248
Odroid XU3 A7 CPU (200MHz) 1780 72.4 129
A7 CPU (700MHz) 504 141 71.4
A7 CPU (1.3GHz) 280 329 92.1

Xun, Lei, Tran-Thanh, Long, Al-Hashimi, Bashir and Merrett, Geoff (2020) Optimising Resource Management for Embedded Machine Learning. In Design, Automation and Test in Europe Conference 2020 (DATE'20).
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EMBEDDED Al ACCELERATION

« General/specialist compute units for Al rapidly increasing

« Some mobile/embedded Al systems are <D
reasonably static...

NnviD

AAAAAA
:::::::

« ...however, others aren’t
— General purpose systems

— Multi-tenant systems

%
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— ‘Adaptive’ Al/event-driven operation

— etc
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SYSTEM RESOURCE MANAGEMENT

« Complexity of hardware-software interaction has grown
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trivial, yet is increasingly needed

Programmable Logic

rmge & Signal Processing

Samsung Exynos 5422 Xilinx Zynq Ultrascale+




UNIVERSITY OF

Southampton

DESIGN-TIME CHALLENGES

Platform Diversity

How can we develop DNN models that can:
DNN model

1. operate across a wide range of different E

heterogeneous platforms, and

2. meet diverse application requirements? / l \

RAM RAM RAM

« Existing design-time approaches such N -- cpr --
[pse ] —

as static model pruning compress the
model to approximately the ‘right size’. [ose ]

GPU

CPUs of two different types, High performance GPU with CPU: of two different types,
GPU and DSP CPU: DSP, GPU and NPU
Application
requirements
1 fps 25 fps e 60 fps
Very-high accuracy High accuracy Medium accuracy

Xun, Lei, Tran-Thanh, Long, Al-Hashimi, Bashir and Merrett, Geoff (2020) Optimising Resource Management for Embedded Machine Learning. In Design, Automation and Test in Europe Conference 2020 (DATE'20).



RUN-TIME CHALLENGES

Workload Diversity

How can we perform inference while:
1. meeting timing requirements?

2. meeting power/energy requirements?
3. meeting accuracy requirements?
How can we do this:

« while executing another DNN model at
the same time?

« while executing other foreground/
background tasks at the same time?

We need dynamic DNNs...
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VR/AR

CPU CPU
Typel Typel
CPU CPU
Typel Typel

PU

CPU CPU
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Xun, Lei, Tran-Thanh, Long, Al-Hashimi, Bashir and Merrett, Geoff (2020) Optimising Resource Management for Embedded Machine Learning. In Design, Automation and Test in Europe Conference 2020 (DATE'20).



DYNAMIC DNNs

Incremental Training with Group Convolution Pruning

L. Xun et al. Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling
on Heterogeneous Embedded Platforms. In Workshop on Machine Learning for CAD (MLCAD’19).

a. Group Convolution
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b. Group-wise incremental training

Trained and
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Initialization: all groups are untrained.

Step 1: Train group 1 of all layers, ignore all other groups.
Step 2: Train group 2 of all layers while incorporate pretrained
group 1, ignore group 3-4.

Step 3: Train group 3 of all layers while incorporate pretrained
group 1-2, ignore group 4.

Step 4: Train group 4 of all layers while incorporate pretrained

Zroup 1.3

¢. Runtime Group Convolution

Pruning
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25% model 50% model

S & & & S & & &
S 8 8 8 S 8 8 8
8 & & © 3 & & O
— y— -t — y— — v -—
© & & © © & & ©

75% model 100% model

G4
G4
G4
G4

Gl G2 G3 G4
Gl G2 G3 G4
Gl G2 G3 G4

Gl G2 G3 G4

Gl G2 G3
Gl G2 G3
Gl G2 G3
Gl G2 G3

Dynamic DNN can switch to 4 different sizes at
runtime for the trade-off between platform-
independent metrics (accuracy, confidence) and
platform-dependent metrics (time and energy)
without model retraining




DYNAMIC DNNs

Experimental Setup

Model: Modified AlexNet (~320kB)

Dataset: CIFARTO
— 32*32*3 images in 10 classes
— 50,000 training and 10,000 testing images

Framework: Caffe

Hardware:

« Odroid XU3
— CPU: 4x Arm A15 + 4x Arm A7
— GPU: Mali-T628

 Nvidia Jetson Nano
— CPU: 4x Arm A57
— GPU: 128x CUDA core Maxwell

Xun, Lei, Tran-Thanh, Long, Al-Hashimi, Bashir and Merrett, Geoff (2020) Incremental Training and Group Convolution Pruning for
Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms. In Workshop on Machine Learning for CAD (MLCAD’19).

AlexNet
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AlexNet incremental
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DYNAMIC DNNs

Results: DVFS and Task Mapping (Odroid XU3)
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Xun, Lei, Tran-Thanh, Long, Al-Hashimi, Bashir and Merrett, Geoff (2020) Incremental Training and Group Convolution Pruning for
Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms. In Workshop on Machine Learning for CAD (MLCAD’19).
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DYNAMIC DNNs

Results: Power Consumption

Power consumption (W)
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DYNAMIC DNNs

Results: DVFS and Task Mapping (Jetson Nano)
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RUNTIME POWER MANAGEMENT

WWW.prime-project.org

Runtime Management (RTM)
« System software to react and predict

- Controls/"knobs’

« ‘Monitors’/sensors

Number of - i s : ' Execution time,
channels/filters, |: p ecution time, type, Execution |- - & | frame rate, etc.

RTM to coordinate/balance... | L et
 Mapping to heterogeneous PEs

« Response to environmental factors
« Power consumption/battery life DVES, DPM,
« (concurrently) Executing tasks '
« Application(s) requirements

« User requirements/QoE

g
b
B
;
Device |
monitor

Bragg, Graeme MclLachlan, Leech, Charles R., Balsamo, Domenico, Davis, James J., Weber Wachter, Eduardo, Merrett, Geoff, Constantinides, George A. and Al-Hashimi, Bashir (2018) An application- and platform-agnostic
control and monitoring framework for multicore systems. 3rd International Conference on Pervasive and Embedded Computing, Portugal. 29 - 30 Jul 2018. 14



Photo by Patrick Schneider on Unsplash
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CONCLUSIONS

« Al is moving to the edge...

66 /f machine learning is going to be deployed at a global
scale, most of the computation will have to be done in
users’ hands, ie in their smartphones 3

« ...but available resources on edge platforms
are typically both constrained and time-varying

« We need improved approaches to manage
resources in systems while providing
acceptable performance

66 Companies will learn to make trade-offs between
accuracy and computational efficiency, though that will
have unintended, and antisocial, consequences too 3 29

3 https://www.thequardian.com/commentisfree/2019/nov/16/can-planet-afford-exorbitant-power-demands-of-machine-learning
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