

Energy-Driven Computing:

Rethinking the Design of Energy Harvesting Systems

10 February 2020

UNIVERSITY OF SOUTHAMPTON

University of Southampton

- ~25,000 students
- Top 100 universities worldwide (QS'19)
- Founding member of UK's Russell Group

School of Electronics and Computer Science

- ~2,000 students
- ~250 PhD research students
- ~100 academics/faculty
- Top 3 in UK for EEE
- 14 research groups/centres

POWERING THE IOT

- We've got batteries!
 - So what's the problem?
- More things = batteries/wires/people
 - Pervasive/IoT/ubiquitous
- Fit-and-forget/maintenance issues
 - Smart homes/grid/metering
- Weight vs volume vs lifetime
 - e.g. Wearables

Highly variable supply + variable consumption!

ENERGY-NEUTRAL COMPUTING

ENERGY-DRIVEN COMPUTING

• What's wrong with energy storage and complexity?

• Emerging applications demanding small dimensions, volumes, weight, cost, etc

INTERMITTENT COMPUTING

Compute operates across power outages

Static Approaches

 Application instrumented with checkpoints

Task-based Approaches

- Application divided into set of small tasks
- State saving during transitions

Reactive Approaches

- Save state on power failure
- No roll-back -> consistent memory
- Less overhead (runtime & mem)

REACTIVE IC: *hibernus*

- Make only a single (but always a single) snapshot per supply 'failure'
 - Removes wasted snapshots
 - Ensures always makes valid snapshot
- Make it as late as possible
 - Avoids re-executing code
 - Maximises execution time

D. Balsamo, A.S. Weddell, G.V. Merrett, B.M. Al-Hashimi, D. Brunelli, and L. Benini, "Hibernus: Sustaining Computation during Intermittent Supply for Energy-Harvesting Systems," IEEE Embedded Systems Letters, 2014

REACTIVE IC: *hibernus*

• Controlled source (signal generator)

• Real energy harvesting sources

Time overheads reduced by 75-100% Energy overheads reduced by 50-80%

D. Balsamo, A.S. Weddell, A. Das, A. Rodriguez Arreola, D. Brunelli, B.M. Al-Hashimi, G.V. Merrett, L. Benini, (2016) Hibernus++: a self-calibrating and adaptive system for transiently-powered embedded devices. *IEEE TCAD*, 1-13.

REACTIVE IC: *hibernus*

Developed a range of optimisations/extensions

- Self calibration for runtime hibernate threshold optimisation (*hibernus*++)
- Adaptive restore based on EH properties (*hibernus*++)
- Hibernation and restore of external peripheral state (*RESTOP*)
- Support for Arm Mbed
- Support for communication and mesh networking
- Applications (cycle computer, fitness monitor, etc)
- Fine-grained power adaption (*PowerNeutrality*)
- Efficient state retention (Selective Policies, *ManagedState*)
- Tooling for system design (ENSPECT, FUSED, Device Sizing)

EFFICIENT STATE RETENTION

STATE RETENTION POLICIES

Allocated State (symmetric/asymmetric NVMs)

Verykios, Theodoros D., Balsamo, Domenico and Merrett, Geoff V. (2018) **Selective policies for efficient state retention in transiently-powered embedded systems: exploiting properties of NVM technologies**. *Sustainable Computing: Informatics and Systems*.

Multiple Blocks (asymmetric NVMs)

NVMs with no erase cost

RAM				Reference				Available NVM Updates					Tables	Ž
b ₀	b1	b ₂	b ₃	bo	b1	b ₂	b₃	bo	b₃	b4	b 2	b ₉		'Ms wi
b₄	b ₅	b_6	b7	b4	b 5	b ₆	b7	bo						th no
b ₈	b ₉	b10	b11	b ₈	b9	b10	b11							erase
b ₁₂	b ₁₃	b _{n-1}	bn	b ₁₂	b ₁₃	b _{n-1}	bn							cost

Sliper, Sivert T., Balsamo, Domenico, Nikoleris, Nikos, Wang, William, Weddell, Alexander and Merrett, Geoff (2019) Efficient state retention through paged memory management for reactive transient computing. *Design Automation Conference*, Las Vegas, United States. 02 - 06 Jun 2019. 6 pp .

MANAGED STATE: USAGE AND OVERHEADS

MANAGED STATE: RESULTS

Suspend + Restore time in relation to on-time

CLOSED-LOOP PERFORMANCE & ENERGY SIMULATION

Developing energy-driven computing systems is difficult

- Operation driven directly by availability of energy
- Introspection/debug inevitably affects stored/harvested energy (and therefore operation)
- Typical embedded systems development can't cope with a DUT that frequently powers off
- Repeatability of EH is problematic

Download: <u>www.arm.ecs.soton.ac.uk/technologies/fused</u> • Sivert Sliper, William Wang, Nikos Nikoleris, Alex S. Weddell, Geoff V. Merrett, "**Fused: Closed-loop Performance and Energy Simulation of Embedded Systems**," *ISPASS* 2020 (in press)

FUSED (<u>Fu</u>ll-system <u>S</u>imulation of <u>Energy-D</u>riven Computers)

- Open source full-system simulator for energy-driven computers
- SystemC for digital and mixed-signal simulation, modelling microcontroller and mixed-signal circuitry
- Models power supply/consumption and execution in a closed loop, modelling the interaction between.
- Accurate power model obtained correlates microarchitectural events with real power measurements
- Enables hardware-software codesign and design space exploration.

FUSED

Fig. 9. Simulation trace of a reactive intermittent computing system powered by a 200 μ A current-limited power supply. The top traces show the logic levels of GPIO pins indicating the operation of the device, and the lower traces show the microcontroller supply voltage (v_{cc}), the storage capacitor voltage (v_{cap}) and the current draw (i_{cc}).

Download: <u>www.arm.ecs.soton.ac.uk/technologies/fused</u>

Sivert Sliper, William Wang, Nikos Nikoleris, Alex S. Weddell, Geoff V. Merrett, "**Fused: Closed-loop Performance and Energy Simulation of Embedded Systems**," *ISPASS* 2020 (in press)

FUSED

Fig. 11. Full-system energy consumption when running AES encryption intermittently, powered by current-limited power source. The energy consumption is divided into stacked bars for the external circuitry (*ext.*), hardware boot (*HW-Boot*), and the operational phases *restore*, *compute* and *suspend*.

Download: <u>www.arm.ecs.soton.ac.uk/technologies/fused</u> Sivert Sliper, William Wang, Nikos Nikoleris, Alex S. Weddell, Geoff V. Merrett, "**Fused: Closed-loop Performance and Energy Simulation of Embedded Systems**," *ISPASS* 2020 (in press)

POWER NEUTRAL COMPUTING

- In Energy-Neutral computing, $\int_{(n-1)\cdot T}^{n\cdot T} P_h(t)dt = \int_{(n-1)\cdot T}^{n\cdot T} P_c(t)dt$ over a 'large' T
- In Power-Neutral computing, $P_c(t) \cong P_h(t)$

- Core frequency and/or voltage
 - Power gating processor elements

٠

• We can approximate power-neutral behaviour if $V_C(t) \approx k$, $\forall t$

POWER NEUTRAL COMPUTING

• What happens if V_C remains constant $(V_C(t) \approx k, \forall t)$?

- MPPT approaches are needed as $V_C(t) \neq V_{H_MPP}(t)$, $\forall t$
- Traditional EH systems decouple source and load using MPPT

• 'Software-only' MPPT can modulate k, i.e. $V_C(t) = V_{H_MPP}(t)$

MAXIMUM SYSTEM EFFICIENCY

MAXIMUM SYSTEM EFFICIENCY

EXPERIMENTAL RESULTS

Operating from a PV Energy Harvester

• Software-Based MPPT

EXPERIMENTAL RESULTS

Operating from a PV Energy Harvester

• Power-Neutral Behaviour

• Application Forward Progress

Performance Scaling Technique	Number of FFTs per second	Performance Scaling Technique	Billions of Instructions Per Second	
Static Approach [16]	1.07	Linux Powersave	0.69	
MCU Power-Neutral Approach [17]	1.65	MP-SoC Power-neutral Approach [2]	1.17	
Momentum	1.83	Momentum	1.27	

TI MSP430FR MCU

ODROID XU-4 MP-SoC

CONCLUSIONS

- We need to rethink the way that we design self-powered systems
- Lots of existing approaches to help with this...
- ...but lots of challenges

YOUR QUESTIONS

Professor Geoff Merrett | gvm@ecs.soton.ac.uk Head of Centre for IoT and Pervasive Systems

Southampton